3. Coherence Properties of the Electromagnetic Field

In this chapter correlation functions for the electromagnetic field are introduced
from which a definition of optical coherence may be formulated. It is shown that
the coherent states possess n'-order optical coherence. Photon-correlation
measurements and the phenomena of photon bunching and antibunching are
described. Phase-dependent correlation functions which are accessible via
homodyne measurements are introduced. The theory of photon counting
measurements is given.

3.1 Field-Correlation Functions

We shall now consider the detection of an electromagnetic field. A large-scale
macroscopic device is complicated, hence, we shall study a simple device, an
ideal photon counter. The most common devices in practice involve a transition
where a photon is absorbed. This has important consequences since this type of
counter is insensitive to spontaneous emission. A complete theory of detection
of light requires a knowledge of the interaction of light with atoms. We shall
postpone this until a study of the interaction of light with atoms is made in
Chap. 10. At this stage we shall assume we have an ideal detector working on an
absorption mechanism which is sensitive to the field E'™ (#, 1) at the space-time
point (r,1). We follow the treatment of Glauber [3.1].

The transition probability of the detector for absorbing a photon at position
r and time t is proportional to

Ty = [<SIET (n0)] )12 (3.1)

if |i) and |f) are the initial and final states of the field. We do not, in fact,
measure the final state of the field but only the total counting rate. To obtain the
total count rate we must sum over all states of the field which may be reached
from the initial state by an absorption process. We can extend the sum over
a complete set of final states since the states which cannot be reached (e.g., states
|/ > which differ from |i) by two or more photons) will not contribute to the
result since they are orthogonal to E*)(r,r)|i). The total counting rate or
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average field intensity is

Hit) =Y Tp= Y GIE (O f Y1 ED ()]0
I N

= (GIE () E ) (r,0)]1) (3.2)
where we have used the completeness relation

YIOHfI=1. (3.3)
f

The above result assumes that the field is in a pure state | ). The result may
be easily generalized to a statistical mixture state by averaging over initial states
with the probability P;, i.e.,

I(r,t) =) P.GIET (1, t)E) (r,0)]i) (3.4)
This may be written as

I(r,t) = Tr{pE ) (r,t ) E ' (r,1)} , (3.5)
where p is the density operator defined by

p = Piliy<il. (3.6)

If the field is initially in the vacuum state

p=105<0], (3.7)
then the intensity is

I(r,t) = <O0|ETE™0) =0 . (3.8)

The normal ordering of the operators (that is, all annihilation operators are to
the right of all creation operators) yields zero intensity for the vacuum. This is
a consequence of our choice of an absorption mechanism for the detector. Had
we chosen a detector working on a stimulated emission principle, problems
would arise with vacuum fluctuations. More generally the correlation between
the field at the space-time point x = (r,1) and the field at the space-time point
x" = (r,t") may be written as the correlation function

GV (x,x") = Tr{pE(x)E(x")} . (3.9)

The first-order correlation function of the radiation field is sufficient to account
for classical interference experiments. To describe experiments involving inten-
sity correlations such as the Hanbury-Brown and Twiss experiment, it is
necessary to define highet-order correlation functions. We define the n'"-order
correlation function of the electromagnetic field as

G{H)(xl cor Xy X g oen xZn) =Tr{pE[_l(xi) E(_}(xu)

XE{+J{XH+1)--- E[+)(x2n)} . (310}
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Such an expression follows from a consideration of an n-atom photon detector
[3.17. The n-fold delayed coincidence rate is

ﬁﬂ"](fl P In) = SHG[ﬂl(f'ltl . rnf",r,,f,, e 1'1.{1) N (311)

where s 1s the sensitivity of the detector.

3.2 Properties of the Correlation Functions

A number of interesting inequalities can be derived from the general expression
Tr{pATA} =0, (3.12)

which follows from the non-negative character of A4 for any linear operator A4.
Thus choosing 4 = E‘7)(x) gives

GV(x,x) =0 . (3.13)

In general, taking

A=EM(x,) ... EF(xy) (3.14)
yields
G™x; ... XX, ... x1) =0 (3.15)
Choosing
A=Y LEx)) . (3.16)
i=1

where 4; are an arbitrary set of complex numbers gives
Y IFALGM(x;,x) =0 . (3.17)
ij
Thus the set of correlation functions G'V(x;, x ;) forms a matrix of coeflicients for
a positive definite quadratic form. Such a matrix has a positive determinant, i.e.,
det[G M (x;,x;)] = 0 . (3.18)
For n = 1, this is simply (3.13). For n = 2 we find
G“’(.vcl,xl)G“'(xz,xz) > [GM(xy,x,)|? (3.19)

which is a simple generalisation of the Schwarz inequality.
Choosing

A= ;Ll E(+l(x1) E{+)(xn_) + ju’.E{ 1 l(-)Cn+l) E(+}(‘x2ll) ’ (320}
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we find the general relation
G (xy oo XXy o X G " (X s g oo X Xap oo Xpi 1)
> [GM(Xy o X Xpa g e Xan)] P (3.21)
For two beams we may take
A= EDEMN () + 4 ES () EY ) (x) (3.22)

with x = (+,0) and x" = (#,1). The Cauchy-Schwartz inequality then becomes

G0)GH0) = [GR(1)]? (3.23)
where
GiP(t) = Tr{pE{ () Ef (x)EfV(x)ES (3] 5 (3.24)

we have noted explicitly that G}’ is time independent.
An inequality closely related to (3.23) may be derived by choosing

A=/ E7()E (x) + 2, ES () ES ) (x) (3.25)
This gives
[CES () ES () ESV (6 ES (x) )2
< CLEV (O E ()P CLES (%) ELY ()17, (3.26)
This inequality will be used in Chap. 5.

3.3 Correlation Functions and Optical Coherence

Classical optical interference experiments correspond to a measurement of the
first-order correlation function. We shall consider Young's interference experi-
ment as a measurement of the first-order correlation function of the field and
show how a definition of first-order optical coherence arises from considerations
of the fringe visibility.

A schematic sketch of Young's interference experiment is depicted in Fig. 3.1.
The ficld incident on the screen at position r and time t is the superposition of
the fields at the two pin holes

EC)(rt) = E{D (1) + ESP) () (3.27)
where E{)(r, 1) is the field produced by pinhole i at the screen with
E ) (k1) = E§+'(r.-, t - S—-") (1) SOl (3.28)
c /) \s

where s; = |r; — |
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Fig. 3.1. Schematic representation of Young's interference experiment

and E'" (r;, t — s;/c) is the field at the i pinhole and for a spherical wave

k—2=0.
¢

Therefore (3.27) becomes

E(lu(f‘l-. r_s_,l) E(z"(”za I_S,z)
‘ - A (3.29)

ED (1) = ——— +
' Sl hp)

For s, ~ 5, ~ R, we have
1 _ .
E("){”,I)ZE[EH”{XIJ + EY(x,)] (3.30)

where

8y S2
Xy = F'],f__ [ X2 = ",20"__ .
C [

The intensity observed on the screen is proportional to
I=Tr{pE" X rt)EN ) (r1)} . (3.31)
Using (3.27) we find
I=G"(xy,x) + G (xz,x;) +2Re{G"(xy, x2)} (3.32)

where the R 2 factor is absorbed into a normalisation constant.
The first two terms on the right-hand side are the intensities from each
pinhole in the absence of the other. The third term is the interference term. The
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correlation function for x; # x,, 1n general takes on complex values. Writing
this as

G (x1,x2) =[GV xy, xp) [T 02) (3.33)
we find
I =GP (x;,x)+ GV(xs5,x5) + 2]GP(xy,x5) cos W(xy,X3) . (3.34)

The interference fringes arise from the oscillations of the cosine term. The
envelope of the fringes is described by the correlation function GV (x,, x,).

3.4 First-Order Optical Coherence

The idea of coherence in optics was first associated with the possibility of
producing interference fringes when two fields are superposed. The highest
degree of optical coherence was associated with a field which exhibits fringes
with maximum visibility. If G""(x, x,) was zero there would be no fringes and
the fields are then described as incoherent. Thus the larger G'"(x,, x,) the more
coherent the field. The magnitude of |GV (x,, x,)] is limited by the relation

|G“)(-‘C1,X2)! < [Gm(-\': a-Yt_)Gm(X;,.Yg)]l z (3.35)

The best possible fringe contrast is given by the equality sign. Thus the necessary
condition for full coherence is

|G (xy.x2)] = [CM(xy.x1) G (x5, x,5) ]2 - (3.36)

Introducing the normalized correlation function

.

gD(xy,X,5) = er(x}i;(;:.’{:ixz)]l,z : (3.37)
the condition (3.36) becomes

19V (xy,x2) = 1 (3.38)
or

gV (x,,x,) = ei¥x)

The visibility of the fringes is given by

p = Jmax = Lin (3.39)

Imax + ]min '
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Using (3.27 and 3.31) for the intensity we may write v as
_ l (}(1'(,11_,_)(2) 2(1112)1']2

B (Gm(xh-‘fl)Gm(—‘fza-\'z))l'{z I+ 1,

2(1, 1)

[lll
I + 1,

(3.40)

=g

If the fields incident on each pinhole have equal intensities the fringe visibility is
equal to |g"’]. Thus the condition for first-order optical coherence |g"| = 1
corresponds to the condition for maximum fringe visibility.

A more general definition of first-order coherence of the field E(x) is that the
first-order correlation function factorizes

Gm(-\'n-‘fz) = ¢ j(-‘l)ﬂtﬂ(-\’z) . (3.41)

It is readily seen that this is equivalent to the condition for first-order optical
coherence given by (3.38). It is clear that for a field in a left eigenstate of the
operator E'*'(x) this factorization holds. The coherent states are an example of
such a field. It is precisely this coherence property of the coherent states which
led to their names.

We may generalize (3.41) to give the condition for nth optical coherence. This
requires that the nth order correlation function factorizes:

G(n)(xl v Xy Xpsqy oon -rxT.u) = st_l(xl} {:(_ ]('Yr:)£{+)(xn+ l] ‘(:(+}(X2n) '

(3.42)

Again the coherent states possess n'"-order optical coherence.

Photon interference experiments of the kind typified by Young’s interference
experiment and Michelson’s interferometer played a central role in early dis-
cussions of the dual wave and corpuscular nature of light. These experiments
basically detect the interference pattern resulting from the superposition of two
components of a light beam. Classical theory based on the wave nature of light
readily explained the observed interference pattern. The quantum-mechanical
explanation is based on the interference of the probability amplitudes for the
photon to take either of two paths. We shall demonstrate how interference
occurs even for a one photon field. For full details of the classical theory and
experimental arrangements the reader is referred to the classic text of Born and
Wolf [3.2].

We consider an interference experiment of the type performed by Young
which consists of light from a monochromatic point source S incident on
a screen possessing two pinholes P; and P, which arc cquidistant from S (sce
Fig. 3.1).

The pinholes act as secondary monochromatic point sources which are in
phase and the beams from them are superimposed on a screen at position » and
time ¢. In this region an interference pattern is formed.

To avoid calculating the diffraction pattern for the pinhole, we assume their
dimensions are of the order of the wavelength of light in which case they
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effectively act as sources for single modes of spherical radiation in keeping with
Huygen'’s principle. The appropriate mode functions for spherical radiation are

1 1/2 Cik'r
u(r) = (M L) - é (3.43)

where L is the radius of the normalization volume, and é, is the unit polarization

vector.
The field detected on the screen at position r and time ¢ is then the sum of the

two spherical modes emitted by the two pinholes
ECI 1) = £, (@ e + a,e™) | (344)

with

ey =i(") b Lo
rt) =1 —
T 2 (4nL)V? R

where s; and s, are the distances of the pinholes P, and P, to the point on the
screen, and we have set s; & s, = R in the denominator of the mode functions.
Substituting (3.43) into (3.2) for the intensity we find

Ir,1) = n[Tr{pala,} + Tr{pasa,} + 2|Tr{paias}|cos®] . (3.45)
where
Tripaja;} =|Tr{pajay}|e?
n=1fr0P .
®=k(s, —2)+ ¢ .

This expression exhibits the typical interference fringes with the maximum of
intensity occurring at

k(s; —s;) + ¢ = n2n | (3.46)

with n an integer.

The maximum intensity of the fringes falls off as one moves the point of
observation further from the central line by the R ™2 factor in | f(r, 1)}

We shall evaluate the intensity for fields which may be generated by a single-
mode excitation and hence have first-order coherence. A general representation
of such a field is

¥ =/(")[0) (3.47)

where |0) denotes the vacuum state of the radiation field and b' is the creation
operator for a single mode of the radiation field. The operator b' may be
expressed as a linear combination of a} and a} as follows

1
b' = ——=(a] + a3) , (3.48)

NE
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where we have assumed equal intensitics through ecach slit. We shall now
consider as a special case the field with only one photon incident on the
pinholes, i.e.,

1

|1 photon = b*]0% = — (] 1,03 + [0,1)) , (3.49)

N

-

/

N

where the notation used for the eigenkets |ny,n,)> implies that there are n,
photons present in mode k, and n, photons present in mode k,. This state of the
field reflects the fact that we don’t know which pinhole the photon goes through.

From (3.45) this yields the following expression for the mean intensity on the
screen

I(r.t) = n(l + cos®) . (3.50)

It is clear from this equation that an interference pattern may be built up from
a succession of one-photon interference fringes.

The quantum explanation for the interference pattern was first put forward
by Dirac [3.3] in his classic text on quantum mechanics. There he argued that
the observed intensity pattern results from interference between the probability
amplitudes of a single photon to take either of two possible paths. The crux of
the quantum mechanical explanation is that the wavefunction gives information
about the probability of one photon being in a particular place and not the
probable number of photons in that place. Dirac pointed out that the interfer-
ence between the two beams does not arise because photons of one beam
sometimes annihilate photons from the other, and sometimes combine to
produce four photons. “This would contradict the conservation of energy. The
new theory which connects the wave functions with probabilities for one photon
gets over the difficulty by making each photon go partly into each of two
components. Each photon then interferes only with itsell. Interference between
two different photons never occurs”. We stress that the above-quoted statement
of Dirac was only intended to apply to experiments of the Young's type where
the interference pattern is revealed by detecting single photons. It was not
intended to apply to experiments of the type where correlations between
different photons are measured.

A very early experiment to test if interference would result from a single
photon was performed by Taylor [3.4] in 1905. In this experiment the intensity
of the source was so low that on average only one photon was incident on the
slits at a time. The photons were detected on a photographic plate so that the
detection time was very large. Interference fringes were observed in this experi-
ment. This experiment did not definitively show that the interference fringes
resulted from a single photon since the statistical distribution of photons meant
that sometimes two photons could be incident on the slits. A definitive experi-
ment was conducted by Grangier et al. [3.57 using a two-photon cascade as



38 3. Coherence Properties of the Electromagnetic Field

a source. A coincidence technique which detected one photon of the pair enabled
them to prepare a one photon source.

We now consider the interference patterns produced by other choices of
a field.

3.5 Coherent Field

We consider a coherent field as generated by an ideal laser incident on the
pinholes. The wavefunction for this coherent field is

|coherent field ) = |2y, %) = |oy p|oy ) (3.51)

Since this wavefunction is a product state, it may well represent two independent
light beams. This particular product may, however, be generated by a single-
mode excitation in the following manner:

|y > 22> = exp(ab’ — 2*b)[ 0

1 1
= exp—=(2a] — 2*a, Jexp _,’5(103 — a*a,)|0)

V2 V=
= “,> : > , (3.52)
NEYANY:
The intensity pattern produced by this coherent field is
I(r,t)=n(|x2|* + |2|*cos ) . (3.53)

The above example demonstrates the possibility of obtaining interference
between independent light beams. Experimentally, this requires that the phase
relation between the two beams be slowly varying or else the fringe pattern will
be washed out. Such experiments have been performed by Pfleegor and Mandel
[3.6]. Interference between independent light beams is, however, only possible for
certain states of the radiation field, for example, the coherent states as demon-
strated above. Interference is not generally obtained from independent light
beams, as we shall demonstrate in the following example. We consider the two
independent light beams to be Fock states, that is, described by the wavefunction

W) =lndlng) (359

This yields a zero correlation function and consequently no fringes are obtained.

The analysis we performed leading to (3.50) bears out Dirac’s argument that
the interference fringes may be produced by a series of one photon experiments.
However, Young’s interference fringes may perfectly well be explained by the
interference of classical waves. Experiments of this kind which measure the first-
order correlation functions of the electromagnetic field do not distinguish
between the quantum and classical theories of light.
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3.6 Photon Correlation Measurements

The first experiment performed outside the domain of one photon optics was the
intensity correlation experiment of Hanbury-Brown and Twiss [3.7].
Although the original experiment involved the analogue correlation of photo-
currents, later experiments used photon counters and digital correlations and
were truly photon correlation measurements. In essence these experiments
measure the joint photocount probability of detecting the arrival of a photon at
time £ and another photon at time ¢ + 7. This may be written as an intensity or
photon-number correlation function. Using the quantum detection theory de-
veloped by Glauber, the measured quantity is the normally ordered correlation
function

G¥(1) = CEC N OET(t + DET(t + 1)ED()D
=)+ 1))
€« {a)n(t + 1)) (3.55)

where : : indicates normal ordering, I(¢) is the intensity for analogue measure-

ments and n(f) is the photon number in photon counting experiments. It is

useful to introduce the normalized second-order correlation function defined by
GIE}{_’{]

gty = GO (3.56)

We shall evaluate g'® (1) for certain classes of field. For a field which possesses
second-order coherence

GP() =& () + eVt + 09D (1) = [GH(0)]2 . (3.57)

Hence g®®(7) = 1.
For a fluctuating classical field we may introduce a probability distribution
P(c) describing the probability of the field E‘*(¢, ) having the amplitude ¢ where

. . . hw \V? .
1_',(+}[£9¢') _ (1 Se—u.-)r .

20V

For a multimode field we have a multivariate probability distribution P({¢}).
The second-order correlation function G®'(1) may be written as

G(t) = [P({ex )E (e, ) E ) (64,1 + T)E ) (gg t + T)ET) (g, 0)d? {e,} .
(3.58)

For zero time delay t = 0 we may write for a single-mode field

P(e)(|el? — {|&]|?))*d%
@) = 1 f |
g0 =1+ (el

(3.59)
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For classical fields the probability distribution P(¢) is positive, hence g>(0) = 1.
For a field obeying Gaussian statistics with zero mean amplitude

CEC e, ) ET e, t + 1) EC (6, ) EF ) (et + 7))
= (E e, ) E T (et + 1)) CET et + 1) ETV (e 1)
+ CET (e, )E @, ) CET et + 1) EF (et + 1))
+ ET N, OE (et 4+ 1) DCEC eyt + 1) ET(e,1)) . (3.60)

For fields with no phase-dependent fluctuations the first term may be neglected.
Then

GP(2) = GDO0P + |GV(1)2 . (3.61)
Hence the normalized second-order correlation function is
92 =1+ 19701 . (3.62)

Now G!(z) is the Fourier transform of the spectrum of the field

o

S(w) = J dre Gz} . (3.63)

-

Hence for a field with a Lorentzian spectrum

gPt)=14¢7" (3.64)
and for a field with a Gaussian spectrum

gP()=1+e 77, (3.65)

where 7 is the spectral linewidth.

For a values of t > 1. the correlation time of the light, the correlation
function factorizes and ¢'*’(r) —» 1. The increased value of ¢'*'(z) for t < 7, for
chaotic light over coherent light [¢®(0)enaotic = 292 (0)eon] is due to the in-
creased intensity fluctuations in the chaotic light field. There is a high probabil-
ity that the photon which triggers the counter occurs during a high intensity
fluctuation and hence a high probability that a second photon will be detected
arbitrarily soon. This effect known as photon bunching was first detected by
Hanbury-Brown and Twiss. Later experiments [ 3.8 ] showed excellent agreement
with the theoretical predictions for chaotic and coherent light (Fig. 3.2). We note
that the above analysis does not rely on any quantisation of the electromagnetic
field but may be deduced from a purely classical analysis of the electromagnetic
field with fluctuating amplitudes for the modes.

Measurement of the second-order correlation function of light with
Gaussian statistics has formed the basis of photon correlation spectroscopy
[3.10]. Photon correlation spectroscopy may be used to measure very narrow
linewidths (1-10® Hz) which are outside the range of conventional spectro-
meters, The second-order correlation function g (z) is measured using electronic
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Fig. 3.2, Measured photo-count statistics for (a) Gaussian, laser and superposed fields. Measuring
time of a single sample: 10 ps. Coherence time of the Gaussian field; 40 ps. (b) Two laser fields.
Measuring time of a single sample: 10 ps

correlators and the linewidth extracted using (3.64 or 3.65). This has found
application, for example, in the measurement of the diffusion coefficient of
macromolecules where the scattered light has Gaussian statistics. The line-
width of the scattered light contains information on the diffusion coefficient
of the macromolecule. This technique has been applied to determine the
size of biological molecules such as viruses as well as in studying turbulent
flows.

3.7 Quantum Mechanical Fields

We shall now evaluate the second-order correlation function for some quantum-
mechanical fields. We shall restrict our attention to a single-mode field and
calculate g®(0) and the variance in the photon number V(n)

_ (ata'aa) _ V(n) — i

PO =" T TR

: (3.66)

where V(n) = {(a"a)*) — (a'ad? .
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Coherent State
For a coherent state

p =1zl g?0)=1 (3.67)
and V(n) = n for a Poisson distribution in photon number.

Number state

1
p=indnl, gPO0)=1-—~- n>2. (3.68)
n

A number state has zero variance in the photon number (V(n)=0). If
g (1) < ¢'?(0) there is a tendency for photons to arrive in pairs. This situation
is referred to as photon bunching. The converse situation, g®(t) > g®(0) is
called antibunching. As noted above, however, ¢**)(t)— 1 on a sufficiently long
time scale. Thus a field for which ¢g'®(0) < 1 will always exhibit antibunching on
some time scale. A value of g'#(0) less than unity could not have been predicted
by a classical analysis. Eq. (3.59) always predicts ¢*'(0) > 1. To obtain
a g?(0) < I would require the field to have elements of negative probability,
which is forbidden for a true probability distribution. This effect known as
photon antibunching is a feature peculiar to the quantum mechanical nature of
the electromagnetic field.

A distinction should be maintained between photon antibunching and
sub-Poissonian statistics, although the two phenomena are closely related. For
Poisson statistics the variance of the photon number is equal to the mean. Thus
a measure of sub-Poissonian statistics is provided by the quantity V(N) — (N ).
For a stationary field one may show that [3.14].

.
‘[ de(T — |tV [¢*(r) — 1], (3.69)

T

(N)?
}r,’.

V(N)— (N> =

where 7 is the counting time interval. If g'®(7) = 1 the field exhibits Poisson
statistics. Certainly a field for which ¢g¥(r) < 1 for all t will exhibit sub-
Poissonian statistics. However, it is possible to specify fields for which
g (1) > ¢'?(0) but which exhibit super-Poissonian statistics over some time
interval.

3.7.1 Squeezed State

We consider a squeezed state |z, r) with r defined as positive (Fig. 3.3). We align
our axes such that the X; direction 1s parallel to the minor axis of the error
ellipse. The direction (/) is referred to as the direction of squeezing and the
direction (2) as the direction of coherent excitation. We then define « by
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Fig. 3.3. A phase convention for squeezed states. Direction / is the direction of squeezing, direction
2 is the direction of coherent excitation. The error ellipse is aligned so that the squeezing direction is
parallel to the X, direction.

20 = (X;) 4+ i{X,)» with § = tan™" ({X,)/{X, ). The variance in the photon
number for this squeezed state is

V(n)— i |«|*(cosh 2r — sinh2rcos 20 — 1) + sinh?r cosh 2r
5 = : 3 —— 3 . (3.70)
n (|2]* 4 sinh®r)

When 0 = =2, that is the squeezing is out of phase with the complex amplitude
V(n) = |z|*¢* + 2sinh?rcosh?r . (3.71)

Thus this state with increased amplitude fluctuations has super-Poissonian
statistics as expected.
When @ = 0, that 1s the squeezing is in phase with the complex amplitude

V(n) = |o|?e 2" + 2sinh?rcosh?r . (3.72)

The first term corresponds to the reduction in number fluctuations in the
original Poisson distribution. The second term is due to the fluctuations of the
additional photons in the squeczed vacuum.

When |«|* > 2sinh? rcosh? r this is an amplitude squeezed state with sub-
Poissonian photon statistics. The maximum reduction in photon number fluctu-
ations one can get in an amplitude squeezed state may be estimated as follows:
Forr =1

Vin) x~ |x|%e™*" + ;e"" . (3.73)
The minimum value of V(n) occurs for e® = 4|xz|* which corresponds to
Viin(n) = 0.94|2|*”. Diagrams depicting squeezed states with reduced ampli-
tude and reduced phase fluctuations are shown in Fig. 3.4.

In Chap. 5 we will discuss a nonlinear interaction which produces a state
with Poisson distribution in photon number, but can also exhibit amplitude
squeezing,
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(a) (b)

Fig. 3.4. Phase-space of amplitude and phase squeezed states. (a) The quadrature carrying the
coherent excitation is squeczed (0 = 0). (b} The quadrature out of phase with the coherent excitation
is squeezed () = n/2)

3.7.2 Squeezed Vacuum

For a squeezed vacuum o =0
V(n) = n(1 + cosh2r) . (3.74)

Hence a squeezed vacuum always exhibits super-Poissonian statistics.

We may compare the characteristics of a squeezed state with that of a num-
ber state. A number state has reduced photon number fluctuations but has
complete uncertainty in phase. Thus a number state will not show any squeez-
ing. For a number state

AX?=AX3=2n+1. (3.75)

A number state may be represented in an (X |, X,) phase space plot as an
annulus with radius \/n and width = 1.

3.8 Phase-Dependent Correlation Functions

The even-ordered correlation functions such as the second-order correlation
function G™"™(x) contain no phase information and are a measure of the
fluctuations in the photon number. The odd-ordered correlation functions
G ™ (X{ ... XpsXns1 --» Xnim) With n # m will contain information about
the phase fluctuations of the electromagnetic field. The variances in the
quadrature phases AX? and AX3 are given by measurements of this type.
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A number of schemes to make quadrature phase measurements have been
discussed by Yuen and Shapiro [3.12].

These schemes involve homodyning the signal ficld with a reference signal
known as the local oscillator before photodetection. Homodyning with a refer-
ence signal of fixed phase gives the phase sensitivity necessary to yield the
quadrature variances.

Consider two fields E,(r,1) and E,(r, t) of the same {requency, combined on
a beam splitter with transmittivity », as shown in Fig. 3.5. This configuration is
essentially identical to the single field quadrature homodyne detection scheme
discussed by Yuen and Shapiro.

We expand the two incident fields into the usual positive and negative
frequency components

ho \'? ,

E] (I', f) — 1( (:) ) (aellk'r wry a‘f'e ither I'J“) ) (3‘?6]
2Veq
ho \' 2 ,

Ez(f",f) — I @ {benlk-r wth th ilk-r fuf') , (3??)
2V80

where a, b are boson operators which characterise the two modes E; and E,,
respectively. Both fields are taken to have the same sense of polarization, and are
phase locked.

The total field after combination is given by

ET{P‘ f) =i _h_{') b ('{,ei{k-r eil) {'TC ithr .-JH] (3?8)
" 2Vsn ?
where
¢ = \;’ﬁqa 1 i\;”rl_; nb . (3.79)

We have included a 90" phase shift between the reflected and transmitted beams
at the beam splitter.
The photon detector, of course, responds to the moments of ¢'¢. We thus

define the number operator N = ¢'c.

/

"o :;-: D photodetector
E (r,t)

Ez(r,t)

Fig. 3.5. Schematic representation of homodyne detection of squeezed states



46 3. Coherence Properties of the Electromagnetic Field

The mean photo-electron current in the detector is proportional to {c¢'c¢)
which 1s given by

Cetey = npeatay + (1= p)<bhy —iy/n(1 — n)(<ay<bty — (aty b)) . (3.80)

Let us take the field E, to be the local oscillator and assume it to be in a coherent
state of large amplitude . Then we may neglect the first term in (3.80) and write
{c'¢) in the form

Cctey x (1=l B+ 1810l — 1 Xosna) » (3.81)
where
Xg=ae " +a'e? (3.82)

and 6 is the phase of . We see that when the contribution from the reflected
local-oscillator intensity level is subtracted, the mean photo-current in the
detector is proportional to the mean quadrature phase amplitude of the signal
field defined with respect to the local oscillator phase. If we change 0 through
n/2 we can determine the mean amplitude of the two canonically conjugate
quadrature phase operators.

We now turn to a consideration of the fluctuations in the photo-current. The
rms fluctuation current is determined by the variance of ¢'c. For an intense local
oscillator in a coherent state this variance is

Vind = (1= n?IB12 + |B1Pn(1 — ) V(Xgir2) - (3.83)

The first term here represents reflected local oscillator intensity fluctuations. If
this term is subtracted out, the photo-current fluctuations are determined by the
variances in Xy, ., the measured quadrature phase operator. To subtract out
the contribution of the reflected local oscillator field balanced homodyne detec-
tion may be used. In this scheme the output from both ports of the beam splitter
is directed to a photodetector and the resulting currents combined with appro-
priate phase shifts before subsequent analysis. Balanced homodyne detection
realises a direct measurement of the signal field quadrature phase operators
[3.12]. Alternatively, the contribution from the local oscillator intensity fluctu-
ations may be reduced by making the transmittivity # = 1, in which case the
dominant contribution to ¥(n. comes from the second term in (3.83).

3.9 Photon Counting Measurements

3.9.1 Classical Theory

Consider radiation of intensity I(t) falling on a photo-electric counter. The
probability that a count occurs in a time dt is given by

Ap(t)y = al(t)dt . (3.84)



3.9 Photon Counting Mcasurements 47

The parameter « is a measure of the sensitivity of the detector, and depends on
the area of the detector and the spectral range of the incident light. Suppose
initially there are no random fluctuations in the intensity I(t). Now 1 — Ap(t')
represents the probability that no counts occur in the time interval dt’ at ¢,
Then assuming the independence of photocounts in different time intervals the
joint probability that no counts occur in an entire interval ¢ to t + T'is given by
the product

1+ T

[T [1 = Apt)] = [] expl — Ap(t)]

[~ t+7T
=exp| — ). Ap(‘r’)}

t+T

= exp| — J- dp{_l’}J . (3.85)
- t
Thus the probability for no counts in the interval tto t + T'is
t+T
Po(T +1,t) = cxp[ -« [ I(_I’)d!’—‘ , (3.86)

H

The probability P{(T + ¢,t) that one count occurs between ¢ and ¢ + 7T is

e t+ T 1+ T
Ydpt”) [TL1 = Ap(t)]~ [dp(r")exp{— Jdp(z')l. (3.87)
Hence
14T t+ T
PI[T+I,I)=[9¢ j I(t")ydr' cxp[—:x .[ 1(:')dr’:|‘ (3.88)

Following this reasoning the probability for n counts in the interval t to t + T'is
1 - -
P, T)= \ [2TI(t, T))" exp[ — aTI(t, T)] ., (3.89)
n!

where
t+T
_ _ 1
I(t, 7"):? J I(t")dt'

1s the mean intensity during the counting interval.
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Now since I(t, T) may vary from one counting interval to the next, P,(7) is
a time average of P,(t, T) over a large number of different starting times

PT) = (P,(t,T)
B <L9J{r, T)T]"

n!

exp[ — al(t. T)T]> . (3.90)

This formula was first derived by Mandel [3.13].
We note a useful generating function for the photon-counting distribution is

QU.T)= Y (1—i)PT) . (3.91)
n=0
The factorial moments of the photon counting distribution may be obtained as
follows:

o

nn—1) ...(n—k)= z nin—1)...(n—k)P,(T)

n=0

Ak

C . .
QT (3.92)

Cr 0

= (=1}

We shall now consider some important cascs of the photon counting formula
(3.89).

3.9.2 Constant Intensity

In the simplest case of a constant intensity (¢, 7) is independent of ¢ and 7,
hence

16, Ty=1. (3.93)

In this case the averaging over a fluctuating intensity I(t) is unnecessary and

]

N _
P,(T) = TSP (—n), (3.94)
where
n=uxlT .

This is a Poisson distribution lor which the variance V(n) = n.

3.9.3 Fluctuating Intensity—Short-Time Limit

When the intensity is fluctuating, Eq. (3.89) can be simplified in the limit where
the counting time 7 is short compared to the coherence time 7, over which the
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intensity changes. If, during the interval 7, I(f) remains reasonably constant
then

16, TY=1() . (3.95)
With ergodic hypothesis for a stationary light source we may convert the

time average in (3.90) into an ensemble average over the distribution p(I(f)).
The photon counting formula may then be written

P.(T) = j EOTL 07 p(ie) afo (3.96)

In the following we replace I{t) by the stochastic variable I for ease of
notation. The mean photon count is

o " € I
A=Y nP(T)=| ) n(-g-}-l-?—e_“”p(l}df
n=0 Jn=o -
0
P
= |aTIp)dl =aT{) . (3.97)

Defining moments of intensity as

0

ary = Jf“p(f)df : (3.98)

0

we find for the mean square count

[ ]

n?= Y n?P,(T)= |@*T*I* + «TI)p(I)dI
n=0

ot—

=a?T*{* +aT{) . (3.99)

Thus the variance is
Vimy=n? — 2 =oaT{U> + a2 T2 — UD>?) . (3.100)
We note that this is always greater than the mean unless p(I) is a Dirac delta

lunction 6(I — I,). This is true for classical fields. For certain quantum mechan-
ical fields we shall see that it is possible to obtain V(n) < 7.
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A thermal light field has the following probability distribution for its in-
tensity

with moments
A"y =nlTy .
The mean and variance of the photocount distribution are
n=aTl,, Vin)=i(l +n) . (3.102)

The photon-counting distribution is

kS

(aT)" 1
P(T)= I"exp| —I{aT + — | |dI
Ion! Iy

x

9(?1 n t —{n+1)
= (IOH)T (:xT + f_n) J x"¢ *dxn!

0

1 7 o\"
— _ 3.103
{1+ﬁ)(]+ﬁ) (3109

This power-law distribution for thermal light has been verified in photon-
counting experiments. Experiments have also shown that the photon count
distribution of highly stabilized lasers is approximated by a Poisson distribution
[3.8, 9].

We conclude with a comment on the form assumed by (¢, 7') if the depletion
of the signal field by the detection process is taken into account. Then

o=

I(t) = Toe ™ (3.104)

where £ i1s the rate of photon absorption. Then

t+ T
It T}:I—G | e A de’ (3.105)
=2 | , | ;
Thus
I(t.T) = ﬂ) (1 —¢ 7). (3.106)
AT

We note that for short counting times this has the same form as (3.95).
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3.10 Quantum Mechanical Photon Count Distribution

The photon count distribution for a quantum mechanical field may be written in
a formally similar way to the classical expression [3.15]

P(T) —< [“’r{:) ] exp[—mf{r}T]:> (3.107)
where

T

I(T) = L I(t)dt

(T) = e )
0
,

= 71__ ET (e t)E Y (r,0)dr (3.108)

o

and : : denotes normal ordering of the operators. We shall demonstrate the use
of this formula for a single-mode field, in which case (3.107) may be written as

(p_ [W(T)a'a]"

P.(T)=Tr
n!

exp[ — u*a;x{T)]:) (3.109)
where u(T) is the probability for detecting one photon in time 7 from a one
photon field. The explicit form of u(7) depends on the physical situation, e.g.,
u(T) = +T for an open system and (7)) = (1 — e *") for a closed system.
The photon count distribution may be related to the diagonal matrix
clements P, = {n|p|n) of p by
n> . (3.110)
n—m )IJH(T]IE ”!

m !
T) . Z P" [l'u( < J! Z 1) Jrnlr iam +1
P,(T) = L P, Z — 1 i m_ I (3.111)

m!
n=m

This gives

The I summation is equivalent to a binomial expansion and we may write [3.16]

=Y P (:}) [A(T)]"[1 = w(T)]" (3.112)

H=m

where

n n'
m)  mln—m) "

This distribution is known as the Bernoulli distribution.
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The photo-count distribution P,(7) 1s only the same as P, in the case of unit
quantum cfficiency

P(T)=P,, wI)=1. (3.113)

In practice, quantum efficiencies are less than unity and the photon-count
distribution is only indirectly related to P,.
The following results may be proved:

3.10.1 Coherent Light

n

Py=" exp(— 7). (3114

n
n

T o |
P,(T) = [‘“(m),"] exp[ — u(T)i] . (3.115)

3.10.2 Chaotic Light

PF#)_)H,,, (3.116)
n

[(T)]"

_ . 3.117
[] + ‘u(’[’)ﬁ]l+m ( }

P,(T)

These results agree with those obtained by semiclassical methods, see (3.94
and 3.103). In these cases P, and P,(7T) have the same mathematical form
with the mean number m of counted photons related to the mean number 7
of photons in the mode by m = u(T)n. No such simple relation holds in
general,

For example, for a photon number state, P, is a delta function é,,, but the
photo-count distribution P,(7) is non zero for all m < no. However the nor-
malized second order factorial moments are the same in all cases.

For a single-mode field

1) _

Y m(m—1) P — Y onn—1) {)—; = ¢'2(0) . (3.118)
m ~ n

Thus the second-order correlation function g‘®(0) is directly obtainable from
the photo-count distribution without any dependence on the quantum efficiency
(7). For a multimode field a more complicated relation holds.
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3.10.3 Photo-Electron Current Fluctuations

We now consider how the photon number statistics determines the statistics of
the observed photo-electron current. Each individual photon detection pro-
duces a small current pulse, the observed current over a counting interval from
t — T'to t1s then due to the accumulated electrical pulses over this interval. Thus
we write

T
ift)= [ F(t'ydn(t') . (3.119)
rdT

Here F(t') is a response function which determines the current resulting from
each photon detfection event. We assume F(t') is flat, i.c. independent of ¢,
Ge
F(t')= , 3.120
') =—, ( )

where e 1s the electronic charge and G is a gain factor. Then the photo-electron
current is given by

Ge
n

i) =— (3.121)

£

where n is the total number of photon detection events over the counting
interval. The mean current is then given by

x

Y nP,(T;t), (3.122)

n=10

Ge

T

i) =

where P,(7t) is given by (3.89) with

1

It T)=%_ f dt’ ECN e YEY (@) . (3.123)
t—T
Thus
i(t) = (2Ge) C: I(t, T):> . (3.124)

The current power spectrum is directly related to the statistical properties of
the current by

S(w) = 111 i dt cos(wt)i(0)i(r) . (3.125)
0

The two-time correlation function is determined by joint emission probabilities
for photo-electrons which are generalisations of the single photon result in
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(3.84). Explicit expressions were given by Carmichael [3.17]. The result is, with
the definitions of (3.120).

i(0)i(t) = (G2 [GI(T, O I(T. 1)y + O(T — ) I(x— T,0):>]  (3.126)

where 6(x) is zero for x < 0 and unity otherwise. For multiple time correlations
:: also signifies time ordering (time arguments increasing to the left in products
of annihilation operators). In the casc of constant intensity

i(0)i(t) = (¢ {Ge)* [<a' (0)a' (1) a(r)a(0) )]

+ (Ge)zoc(:[&(T— z)(T;Z i <a*(o)a[0)>} (3.127)

where { is a scale factor that converts the intensity operator into a photon-flux
operator. For plane waves it is given by

¢ = foc (3.128)
hwc

where A is the transverse area of the field over which the field is measured, and
o, the frequency of the field. Using the following result for the delta function

o)

jdz’f(r)a(z’) = %f(O) : (3.129)
0

one may show that

(T —1)
m—0

li

T—=0

(T —1)=d(t) . (3.130)

Then in the limit of broad-band detector response (T — 0)

({(0)i(1)) = (2 Ge{)* (@' (0)a’ (1) al1) a(0)> + (Ge)* x{ <a' (0)a(0)) (1) (3.131)

The last term in this expression is the shot noise contribution to the current.
It is more convenient to write this expression directly in terms of the
normally-ordered correlation function

CGI0),1(7):) = (2 [Ka' (0)at ()a(r)a(0)) — <a'(0)a(0)>?] . (3.132)
Then
(i(0)i(r) = (2 Ge{)?<a' (0)a(0)>? + a{(Ge)* <a' (0)a(0) ) 5 (1)
+ (2 Ge)> 1(0), I(7):) . (3.133)

The first term is a dc term and does not contribute to the spectrum. The second
term is the shot-noise contribution. The final term represents intensity fluctu-
ations, which for a coherent field is zero.
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Exercises

3.1 Calculate the mean intensity at the screen when the two slits of a Young's
interference experiment are illuminated by the two photon state (b*)?]0) ,-"\/(2
where b = (a; + az);’\ﬁ and a; is the annihilation operator for the mode
radiated by slit i.

3.2 Consider a single-mode field prepared in a linear superposition of two
coherent states | 7> = N(|%; > + |2, )} where N is the normalisation constant
and |2, | = |, |. Show that g'*(0) for such a state is zero when =, and o, are ©t/2
out of phase, and diverges when %, and «, are & out of phase.

3.3 Inbalanced homodyne detection the measured photocurrent is determined
by the moments of the photon number difference at the two output ports of the
beam splitter. Show that the variance of the photon-number difference for
a 50/50 beam splitter is

Vin_)= |ﬁ|2 V(Xpsn2)

where |f3|? is the intensity of the local oscillator. Thus the local oscillator
intensity fluctuations do not contribute.

3.4 Show that the probability to detect m photons with unit quantum effici-
ency in a field which has been transmitted by a beam splitter of transmitivity g, is
given by

fl=m

: n
Pm()u) = Z P" (,n) ‘“??1(1 o ‘“]n—m

where P, is the photon number distribution for the field before passing through
the beam splitter.

3.5 A beam splitter transforms incoming mode operators a;, b; to the outgoing
operators ag. by where

dg = \’..-"!;ﬂl' + i\',r"jl — ”?b,‘, hn = \,-’fﬁbf — i\/'rl —7;}'{?; .
(a) Show that such a transformation may be generated by the unitary operator
T'=exp[ —i0(a*h + ab')], n=cos?® .

% >& | f;i >, the

(b) Thus show that if the incoming state is a coherent state
outgoing state is also a coherent state with

U = \/‘T?ai + i\/fl — nb, Bo = \/-f?-ﬁr‘ - i\,f/rj - 'faf .






